21 research outputs found

    The European Hematology Association Roadmap for European Hematology Research. A Consensus Document

    Get PDF
    Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundatio

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients

    Red blood cell alloimmunization is influenced by the delay between Toll-like receptor agonist injection and transfusion

    No full text
    International audienceMurine models of red blood cell transfusion show that inflammation associated with viruses or methylated DNA promotes red blood cell alloimmunization. In vaccination studies, the intensity of antigen-specific responses depends on the delay between antigen and adjuvant administration, with a short delay limiting immune responses. In mouse models of alloimmunization, the delay between the injection of Toll-like receptor agonists and transfusion is usually short. In this study, we hypothesized that the timing of Toll-like receptor 3 agonist administration affects red blood cell alloimmunization. Poly(I:C), a Toll-like receptor 3 agonist, was administered to B10BR mice at various time points before the transfusion of HEL-expressing red blood cells. For each time point, we measured the activation of splenic HEL-presenting dendritic cells, HEL-specific CD4(+) T cells and anti-HEL antibodies in serum. The phenotype of activated immune cells depended on the delay between transfusion and Toll-like receptor-dependent inflammation. The production of anti-HEL antibodies was highest when transfusion occurred 7 days after agonist injection. The proportion of HEL-presenting CD8α(+) dendritic cells producing interleukin-12 was highest in mice injected with poly(I:C) 3 days before transfusion. Although the number of early-induced HEL-specific CD4(+) T cells was similar between groups, a high proportion of these cells expressed CD134, CD40 and CD44 in mice injected with poly(I:C) 7 days before transfusion. This study clearly shows that the delay between transfusion and Toll-like receptor-induced inflammation influences the immune response to transfused red blood cells

    Rituximab for prevention of delayed hemolytic transfusion reaction in sickle cell disease

    No full text
    International audienceDelayed hemolytic transfusion reaction (DHTR), a life-threatening transfusion complication in sickle cell disease (SCD), is characterized by a marked hemoglobin drop with destruction of both transfused and autologous red blood cells (RBCs) and exacerbation of SCD symptoms. One mechanism of RBCs destruction is auto-antibody production secondary to transfusion. As rituximab specifically targets circulating B cells, we thought that it could be beneficial in preventing this immune-mediated transfusion complication. We report the case of a SCD patient who previously experienced DHTR with auto-antibodies and who needed a new transfusion. DHTR recurrence was successfully prevented by rituximab administration prior transfusion, supporting the safe use of rituximab to prevent DHTR in SCD patients as a second line approach when other measures failed

    Direct stimulation of cytokines (IL-1 beta, TNF-alpha, IL-6, IL-2, IFN-gamma and GM-CSF) in whole blood. I. Comparison with isolated PBMC stimulation.

    Full text link
    Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro
    corecore